Xiao Mao

Phone:	+1 617 955 7652
Email:	matthew99a@gmail.com
	xiaomao@stanford.edu
Website:	matthew99a.github.io

Education

• Stanford University Ph.D	2022 to Present
- Field: Theoretical Computer Science	
• Massachusetts Institute of Technology M.Eng.	2021 to 2022
– Thesis Supervisor: Virginia Vassilevska Williams	
• Massachusetts Institute of Technology B.S. in Computer Science and Engineering and in Mathematics	2017 to 2021
Research and Work Experience	
 Stanford University Ph.D. currently advised by Prof. Aviad Rubenstein – Focus on algorithms and complexity. 	Sep. 2022 to present
 Massachusetts Institute of Technology M.Eng. with thesis supervised by Prof. Virginia Vassilevska Williams – Focus on algorithms and complexity. 	Sep. 2021 to Sep. 2022
 Massachusetts Institute of Technology UROP advised by Professor Michael Sipser – Research projects on algorithms and complexity. Finished two manu 	Feb. 2020 to Dec. 2020
• Microsoft Corporation, Bellevue, WA Intern	Summer 2019
 Studied Hopscotch Hashing and its performance, both theoretical and 	d practical.

- Studied Hopscotch Hashing and its performance, both theoretical and practical.

Forly.al, Inc., Fremont, CA Intern
Migrated the build tool from Bash to a 1000-line standardized Python script with improved functionality.

Publications

Pony.ai, Inc., Fremont, CA

- [1] Xiao Mao. Breaking the Cubic Barrier for (Unweighted) Tree Edit Distance. In *Proceedings of the* 62nd IEEE Symposium on Foundations of Computer Science (FOCS), 2021.
 (Machtey Award for Best Student Paper) (Invited to the SICOMP Special Issue for FOCS 2021)
- [2] Xiao Mao. (1ϵ) -approximation of knapsack in nearly quadratic time, 2023. arXiv:2308.07004 (To appear in ACM Symposium on Theory of Computing (STOC 2024)).
- [3] Xiao Mao. Fully-dynamic all-pairs shortest paths: Likely optimal worst-case update time, 2023. arXiv:2306.02662 (To appear in ACM Symposium on Theory of Computing (STOC 2024)).
- [4] Xiao Mao Mingyang Deng, Ce Jin. Approximating Knapsack and Partition via Dense Subset Sums. In *Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2023.
- [5] Ziqian Zhong Mingyang Deng, Xiao Mao. On Problems Related to Unbounded SubsetSum: A Unified Combinatorial Approach. In *Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms* (*SODA*), 2023.

Older Manuscripts

- [1] Xiao Mao. Shortest non-separating st-path on chordal graphs. 2020
- [2] Xiao Mao. A natural extension to the convex hull problem and a novel solution. 2020

Selected Awards and Scholarships

•	FOCS 2021 Best Student Paper (Machtey Award)	2021
•	45th ICPC World Finals1 Gold medal, 1st place	November 2022
•	International Olympiad in Informatics Silver medal	July to August 2017
•	National Olympiad in Informatics, China Gold medal, 1st place	July 2016

Talks

Breaking the Cubic Barrier for (Unweighted) Tree Edit Distance	
– FOCS 2021	Feb 2022
– Yao Class seminar	Sep 2021
 Approximating Knapsack and Partition via Dense Subset Sums – SODA 2023 	Jan 2023

Service

• Conference Reviewing: ITCS 2022, SWAT 2022, MCFS 2022, SODA 2024, STOC 2024